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Abstract
Microbial succession during leaf breakdown was investigated in a small forested stream in
west-central Georgia, USA, using multiple culture-independent techniques. Red maple
(Acer rubrum) and water oak (Quercus nigra) leaf litter were incubated in situ for 128 days,
and litter breakdown was quantified by ash-free dry mass (AFDM) method and microbial
assemblage composition using phospholipid fatty acid analysis (PLFA), ribosomal inter-
genic spacer analysis (RISA), denaturing gradient gel electrophoresis (DGGE), and bar-
coded next-generation sequencing of 16S rRNA gene amplicons. Leaf breakdown was
faster for red maple than water oak. PLFA revealed a significant time effect on microbial
lipid profiles for both leaf species. Microbial assemblages on maple contained a higher rela-
tive abundance of bacterial lipids than oak, and oak microbial assemblages contained
higher relative abundance of fungal lipids than maple. RISA showed that incubation time
was more important in structuring bacterial assemblages than leaf physicochemistry.
DGGE profiles revealed high variability in bacterial assemblages over time, and sequencing
of DGGE-resolved amplicons indicated several taxa present on degrading litter. Next-gen-
eration sequencing revealed temporal shifts in dominant taxa within the phylum Proteobac-
teria, whereas γ-Proteobacteria dominated pre-immersion and α- and β-Proteobacteria
dominated after 1 month of instream incubation; the latter groups contain taxa that are pre-
dicted to be capable of using organic material to fuel further breakdown. Our results suggest
that incubation time is more important than leaf species physicochemistry in influencing leaf
litter microbial assemblage composition, and indicate the need for investigation into sea-
sonal and temporal dynamics of leaf litter microbial assemblage succession.

Introduction
Allochthonous (external) inputs are the major source of energy and nutrients within food webs
of many small forested streams [1], with this input primarily entering streams as leaf litter
from surrounding riparian vegetation [2–5]. Nutrient release by stream microorganisms dur-
ing breakdown is a critical process affecting whole-stream metabolism [5–7]. Litter also
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provides a vital structural habitat for many stream benthic macroinvertebrate communities [8,
9]. Thus, the structural and energetic importance of leaf litter to forested streams makes it an
integral part of overall ecosystem integrity and function [1, 7, 10].

In streams, leaf breakdown, defined as the decomposition of vascular plant detritus
described by Webster and Benfield [1], consists of 3 primary phases—leaching, conditioning,
and fragmentation. Once immersed, litter undergoes chemical leaching usually within 24 to
48h [11]. Colonization and conditioning by fungi and bacteria softens litter and facilitates fur-
ther decomposition within days after immersion [12, 13]. Litter is subsequently fragmented by
physical abrasion and processing by macroinvertebrate consumers (i.e., shredders) [12, 14, 15],
which, in combination, accelerate breakdown [16].

Leaf physicochemical characteristics, such as initial N concentration, C:N,structural com-
pounds (e.g. lignin, hemicellulose, cellulose), physical leaf toughness, and physical barriers (e.g.
cutin) vary strongly among leaf species [11, 17, 18], and such variation can affect breakdown
[11]. Ostrofsky [17] showed that the best leaf chemistry predictors of breakdown were %N, C:
N, condensed tannin concentration, and %lignin:%N. Coulson & Butterfield [19] showed high
N, and secondarily P, concentrations were positively correlated with microbial densities and
breakdown within a bog. Studies of forest floor litter decomposition also have shown litter Ca
to significantly predict breakdown rates, likely because of its effects on earthworm abundance
in these systems [20]. Low C:N also is associated with increased microbial activity, often occur-
ring in litter low in cellulose and lignin and with faster breakdown rates [21]. Several other stud-
ies reported concentrations of structural compounds (e.g., lignin, hemicellulose, and cellulose)
within litter are inversely related to breakdown, possibly inhibiting fungal and bacterial coloni-
zation of litter [22–24]. Leaf toughness and cutin also are negatively correlated with leaf mass
loss during breakdown, acting as potential barriers and resisting microbial degradation [18, 25].

Stream fungi and bacteria are critical to litter breakdown, and their relative contributions to
leaf conditioning indicate a greater initial contribution by fungi with bacterial conditioning
increasing over time [26, 27]. Given their critical role in litter breakdown and associated energy
cycling, it is necessary to investigate the presence and potential functional role of specific taxa
present during breakdown. In this context, data on individual taxa presence can provide insight
into the specific biochemical and physiological processes involved in breakdown. For example,
increased abundance of N-fixing Nitrobacter species in decomposing litter may indicate
increased nitrification during certain stages of litter breakdown. In addition, in disturbed sys-
tems, knowing which taxa are typically present in decomposing litter under certain environ-
mental conditions facilitates comparison within and among streams, and could inform the
efficacy of stream restoration practices in re-establishing system function [28].

To date, studies usually have characterized fungal and bacterial assemblages present at dif-
ferent stages of breakdown using a combination of cultivation, microscopy, and assays of
reproductive structures and metabolic products [29–33]. The advent of molecular techniques,
including DNA sequencing and fingerprinting, provides an opportunity to characterize micro-
bial assemblage dynamics during litter breakdown with increased resolution of microbial taxa,
as well as a heightened ability to quantify assemblage similarity [34]. For example, ribotype fin-
gerprinting techniques have been used to quantify fungal preferences of leaves during coloniza-
tion [35], and the application of denaturing gradient gel electrophoresis (DGGE) to study
bacterial and fungal assemblages revealed temporal shifts in microbial assemblages during con-
ditioning [36–38]. Phylogenetic resolution of microbial taxa during breakdown would thus
contribute greatly to our knowledge of stream microbial population dynamics, as well as the
role of leaf physicochemistry as a potential modulator of assemblage structure during break-
down. However, many molecular techniques have known biases, including differential amplifi-
cation of microbial taxa by varying primer sets, co-migration of ribotypes, or reproducibility of
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the denaturing gradient, which necessitates a pluralistic approach in understanding assemblage
dynamics. Thus, we aimed to use several molecular methods (i.e., DGGE, RISA, PLFA, and
next-generation sequencing) to quantify microbial succession during breakdown for 2 litter
species of contrasting leaf physicochemistry (i.e., water oak and red maple) in a small, forested
coastal plains stream, by 1) comparing differences in fungal and bacterial assemblages between
leaf species and, thus, 2) characterizing bacterial taxa associated with litter during breakdown.

Materials and Methods
Study site
The study was conducted at Kings Mill Creek (UTM 0720701E 3600036N), a second-order,
low-gradient stream at the Fort Benning Military Installation (FBMI) in west-central Georgia,
USA. Authority to this field site was granted by FBMI (U.S. Army) with FBMI liaison Hugh
Westbury arranging site access on sampling dates. FBMI occurs south of the Fall Line in the
Sand Hills sub-ecoregion of the Southeastern Plains ecoregion [39]. Kings Mill Creek is a low-
nutrient stream with sandy substrate [40], and an intact deciduous riparian canopy [41, 42]
consisting mostly of red maple (Acer rubrum), dogwood (Cornus spp.), yellow poplar (Lirio-
dendron tulipifera), sweetgum (Liquidambar styraciflua), sweetbay magnolia (Magnolia vir-
giniana), black gum (Nyssa sylcatica), and water oak (Quercus nigra) [43]. The Kings Mill
Creek watershed was largely forested (>85% forest cover) [40] with a high abundance of shred-
der macroinvertebrates (K.O. Maloney, unpubl. data), implying the importance of litter to the
stream’s trophic economy.

Experimental design
An in situ litter decomposition experiment was conducted using 2 leaf species, Acer rubrum
(red maple) and Quercus nigra (water oak). Both species were common in riparian zones at the
study site and across FBMI in general [44]. In general, red maple leaves are 2 to 4 inches long
and wide, and water oak leaves are 1.5 to 4 inches long and 0.5 to 2 inches wide [45]. These spe-
cies span a range of breakdown rates, with red maple having a medium breakdown rate
(k = 0.005–0.010) and water oak a relatively low rate (k<0.005) (Webster & Benfield, 1986). In
addition, maple species (Acer spp.) show a strongly contrasting chemistry compared to oaks
(Quercus spp.), with maple having higher N content (low C:N) and oak having a higher C:N
and lignin content [17]. The leaves of these two species also differ physically in that maple spe-
cies often have thicker leaves and an increased specific leaf mass per unit area [46] while oak
leaves possess a thick, waxy cuticle and high concentration of tannins [47].

We incubated litter in situ [48] over 9 collection dates (days 0, 1, 2, 4, 8, 16, 32, 64, and 128)
from January to May 2007, which spanned early microbial colonization and those temporal
changes occurring as litter breakdown proceeded. We established 3 leaf treatments, which
included 2 single-species treatments of red maple and water oak alone and 1 mixed-litter treat-
ment containing a 1:1 mix of red maple and water oak leaves. Leaf packs of both single species
and mixed litter packs were placed in mesh bags (0.1524 m x 0.3048 m, Nylon Net Co., Mem-
phis, TN, USA), with mesh size large enough (6.35 mm) to allow macroinvertebrate coloniza-
tion on one side and a smaller (3.175 mm) mesh on the other side to reduce loss of litter
particles from inside the bag during incubation. We placed leaf packs in 8 runs, which are
stream microhabitats with relatively homogeneous depth and current of moderate, non-turbu-
lent flow [49–51]. Within each run, we used a randomized complete block design with 4 blocks
per run and each block containing one replicate of each treatment (S1 Fig). Runs were sampled
randomly over the study with one run sampled per date. We collected leaves for leaf packs
from a single tree of each species during fall 2006 (December-January) using tarps strung

Microbial Succession on Leaf Litter during Instream Litter Breakdown

PLOSONE | DOI:10.1371/journal.pone.0130801 June 22, 2015 3 / 22



below trees to accumulate abscised leaves. We used single trees for each species to reduce vari-
ability in initial phyllosphere composition from cultivar-specific variations in leaf chemistry.
We air-dried leaves in a sterile Class II biosafety cabinet to a constant mass, weighed into 4-g
aliquots, and then placed them into sterilized mesh bags until deployed. Mixed litter packs con-
tained 2 g of each leaf species. Once filled, mesh bags were sewn closed with nylon and then
anchored in the stream with rebar. Leaf species were sampled on day 0 by immersing packs in
stream water and then removing and returning them to the laboratory to quantify handling
loss [11]. Day 0 packs were selected to represent the initial phyllosphere microbial assemblage
for each leaf species, and these packs were treated similarly to all others for further processing.

On each date, we randomly selected one run and removed all 4 blocks of leaf packs for each
treatment (n = 4/date). Leaves were placed in a Ziploc bag, and returned on ice to the labora-
tory. A 2-leaf subsample was removed from each leaf pack, ground in liquid N2 and stored at –
80°C until processed for microbial assemblage characterization (below). We used only the sin-
gle-species treatments for microbial assemblage characterization (below). The remaining leaves
were rinsed and dried to a constant mass at 60°C, weighed, and then combusted in a muffle fur-
nace at 550°C for 2 h. The ashed residue was weighed, and this weight was subtracted from the
pre-combusted dry mass to estimate breakdown rate (as ash-free dry mass, AFDM). Break-
down rates were estimated using an exponential decay model [11] as the slope of the regression
line of ln (% AFDM remaining) vs time [52].

To characterize variation in environmental conditions known to affect breakdown [1, 53]
we also quantified streamwater temperature, depth, and current velocity at or near each collec-
tion point. Temperature was recorded hourly with HOBO Temp data loggers (Onset Computer
Corp., Pocasset, MA, USA). We also quantified depth and current velocity within each run
(n = 12/run) to assess the spatial variation in initial depth and current velocity that might have
influenced microbial assemblages independently of date. Leaf pack depth was measured using
a meter stick placed at the top center of each leaf pack, and a Marsh-McBirney Flow-Mate cur-
rent meter (Frederick, MD, USA) was used to measure current velocity conditions at each leaf
pack. In addition, current velocity inside each leaf pack was estimated by positioning an empty
“dummy” bag over the probe placed immediately upstream of each leaf pack with current
velocity typically ranging from ~0 to 0.10 m/s faster outside (vs. inside) a given leaf pack.

Microbial lipids and assemblage characterization
Microbial lipids. Relative abundance of bacterial and fungal lipids on incubating litter was

estimated by using phospholipid fatty acid (PLFA) analysis to quantify relative abundance of
different lipid markers associated with bacteria and fungi present over the study [54, 55]. PLFA
uses readily degraded phospholipid fatty acids to estimate the abundance of microbial biomass,
and can accurately characterize lipid profiles of other benthic microbial assemblages [54, 56].
The PLFA method was adapted from Sasser [57] for saponification, formation of fatty acid
methyl esters (FAMEs), extraction, and a base wash, as follows. First, we placed an approxi-
mately 680-mg sample of the liquid N2-ground litter in a 20 mL test tube. Samples were saponi-
fied to liberate fatty acids from lipids of lysed cells with 1.0 mL saponification reagent (45 g
NaOH, 150 mL methanol, 150 mL deionized water), vortexed for 10 s, heated to 100°C for 5
min in a water bath, and then vortexed and reheated to 100°C for 25 min. FAMEs were formed
through methylation by adding 2 mL of methylating reagent (325 mL 6.0 NHCl, 275 mL meth-
anol), and vortexing and heating them to 80°C for 10 min. FAMEs were extracted from the
aqueous phase into an organic phase using 1.25 mL extraction reagent (100 mL hexane, 100
mL methyl-tert butyl ether) tumbled for 10 min. Last, the aqueous phase was removed with a
Pasteur pipette, washed with 3 mL of base wash (10.8 g NaOH, 900 mL distilled water) and
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tumbled for 5 min. Prior to chromatographic analysis, the organic phase containing FAMEs
was transferred to glass vials and then analyzed using the Microbial Identification System
(MIDI, Inc., Newark, DE USA). The output yielded sample-specific fatty acid (FA) peak
responses, which were then used to estimate relative abundance of bacterial and fungal lipids.
Relative abundance of bacterial lipids was estimated using branched-chain saturated (e.g., iso
and anteiso), hydroxyl (OH), monounsaturated, and cyclopropyl FAs [55], whereas fungal
lipid relative abundance was estimated using three lipid markers (18:2ω6, 18:1ω9c, and
18:3ω6c) [58, 59]. Estimates of relative fungal and bacterial lipid abundance were compared to
determine relative differences in fungal and bacterial lipids between leaf species over the study.
Microbial lipid profiles were compared to examine leaf species-specific differences in microbial
assemblage composition over the study.

DNA extraction for molecular analyses of bacterial assemblages. To reduce potential
bias resulting from using a single molecular technique, litter subsamples were collected and
used for 3 separate molecular analyses: 1) ribosomal intergenic spacer analysis (RISA), 2)
DGGE, and 3) bar-coded next-generation sequencing of 16S rRNA gene amplicons. Sequenc-
ing DGGE ribotype bands of the V3 region from the 16S rRNA gene coupled with bar-coded
next-generation sequencing of 16S rRNA gene amplicons of the V4 region both provide taxo-
nomic information but target different regions of the 16S rRNA gene to eliminate potential
biases associated with targeting a single region. Bar-coded next-generation sequencing of 16S
rRNA gene amplicons provides increased phylogenetic resolution compared to DGGE band
sequencing and can be used to examine shifts in overall assemblage composition rather than
only those of more abundant taxa. Techniques such as RISA, in addition to PLFA, also can be
used to assess shifts in assemblage composition, but do so by targeting other cell components,
e.g. fatty acids and intergenic spacer regions, thus reducing biases associated with a specific tar-
get region and allowing for processing of more samples than is feasible using sequencing alone.
Here, genomic DNA was extracted from a 0.10-g litter subsample using a Qiagen genomic
DNA extraction kit (Qiagen, Valencia, CA, USA). DNA was purified using cetyltrimethylam-
monium bromide (CTAB) extraction [60]. In some samples, particularly for day 0, extracted
DNA was not sufficiently pure to serve as template for PCR. For these samples, we conducted
additional genomic DNA purification using a combination of 80% formamide and 1M NaCl
treatment to provide PCR-ready genomic DNA template [61]. This purification step has been
tested with DNA extracted from many different environments and has not been observed to
result in any loss of DNA or corresponding loss of diversity as assessed by DGGE. If the form-
amide step was deemed necessary by low PCR amplification using DNA templates derived
from commercial kit extraction for a given sample date, then this method was applied to all
samples on that date.

Rapid comparison of bacterial assemblages using RISA. RISA analysis was conducted as
a rapid assay of bacterial assemblage composition among leaf packs over the study. RISA
involved PCR amplification of bacterial internal transcribed spacer (ITS) regions and separat-
ing polymorphic ITS amplicons within a polyacrylamide gel matrix. PCR was conducted with a
reaction volume of 10 μL containing GoGreen Master Mix (Promega, Madison, WI, USA), 1x
Bovine Serum Albumin (BSA), nuclease free water, primers, and approx. 1–5 ng genomic
DNA template, quantified spectrophotometrically with a NanoDrop ND-1000 (Thermo Fisher
Scientific, Wilmington, DE, USA). Primers used for these reactions were the universal bacterial
primers IRDYE 800-labeled ITSF (5'-GTCGTAACAAGGTAGCCGTA-3') [62] and ITSReub
(5'-GCCAAGGCATCCACC-3') [62] at a final concentration of 0.20 μM. This primer set is not
as susceptible as other primers to PCR biases such as those from substrate reannealing [63] and
preferential amplification of shorter DNA templates [62]. A hot start PCR was used to prevent
non-specific amplification, and the PCR products were robust. Amplification was done
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according to Fisher & Triplett [64] as follows: reaction mixtures were held at 94°C for 2 min,
followed by 30 cycles of amplification at 94°C for 15 s, 55°C for 15 s, and 72°C for 45 s, and a
final extension of 72°C for 2 min. We verified PCR products on a 1% agarose gel stained with
ethidium bromide. Following verification of product yield and size, we separated amplicons in
a 5.5% polyacrylamide gel matrix and images were recorded using a Li-Cor 4300 (Li-Cor Inc.,
Lincoln, NE, USA).

Identification of abundant bacterial taxa using DGGE. DGGE was used to allow com-
parison to previous studies and to assess taxon relative abundance [65] within litter over the
study. Replicates from each sampling date were prepared using a 2-step process. First, genomic
DNA extracted from leaf subsamples was used as a template in a PCR. Fifty μL reactions were
conducted using a GoGreen Master Mix (Promega, Madison, WI, USA) that included Taq
polymerase, dNTPs, and Mg+2-containing buffer (at 1x concentration). In addition, PCR reac-
tions included 5 μL of 1:50 diluted DNA template, 1x BSA and 0.20 μM each of the universal
bacterial primer set 518R (50-ATTACCGCGGCTGCTGG-30) [66] and 338F-GC (5’-
CGCCCGCCGCGCCCCGCGCCCGTCCCGCCGCCCCCGCCCTCCTACGGGAGGCAG
CAG-3’) [65]. This specific primer set was chosen to amplify the V3 region of the 16S rRNA
gene, which can resolve bacterial taxa and produce comparable results to full-length (V1–V9)
16S rRNA gene sequence [67]. PCR conditions included 2-min of denaturation at 95°C fol-
lowed by 30 cycles of 95°C for 1 min, 1 min of annealing at 55°C, and then 2 min of extension
at 72°C [68]. Following PCR, an 8% polyacrylamide gel was poured containing a vertical gradi-
ent of formamide and urea at a final gradient concentration range of 45 to 55%. PCR products
were loaded in the gel with 20 μL (~198–240 ng) per lane and electrophoresed for 15 h at 100 V
and 60°C. Gels were then stained with ethidium bromide for 10 min and rinsed in deionized
water for 15 min, after which bands were visualized using an AlphaImager HP gel documenta-
tion system (Alpha Innotech, San Leandro, CA, USA). Individual bands were considered dis-
tinct ribotypes [69]. Abundant rRNA gene amplicons for a given sampling time were visually
identified, excised, and used as template in a subsequent PCR. All subsequent reactions were
done in a total volume of 25 μL containing GoGreen Master Mix (Promega, Madison, WI,
USA), primers 518R and 338F (without the GC clamp), and 2 μL of excised PCR product. All
PCRs generated products without requiring further resolution of bands, and were sequenced
using 518R (5 μM) and BigDye sequencing chemistry by the Lucigen Corporation (Middleton,
WI). Unaligned sequences were compared to the GenBank nr/nt database using the BLASTn
search algorithm at the National Center for Biotechnology Information (NCBI) to obtain the
top ten nearest related bacterial taxa (!95% similarity) based on 16S rRNA sequence identity.
Previous studies reported that a portion of the16S rRNA gene amplicons, generated using uni-
versal 16S rRNA bacterial primers and isolated via DGGE, corresponded to plant 16S rRNA
gene sequences [70, 71]. However, no mitochondrial or plastid sequences were obtained from
our excised DGGE amplicons.

Bacterial assemblage characterization using paired-end sequencing of 16S rRNA gene
amplicons. Replicate samples of each leaf species from a subset of incubation times (days 0,
32, and 128, representing early, mid-, and late-stages of breakdown, respectively) were used for
next-generation sequencing of 16S rRNA gene amplicons to obtain a more comprehensive
measure of bacterial assemblage diversity and composition. Amplification and sequencing of
the V4 region of the 16S rRNA gene was performed using a modified method from Caporaso
et al. [72]. Briefly, each sample was amplified using a 25-μL PCR reaction. Each reaction con-
tained 12.5 μL KAPA HiFi HotStart ReadyMix (at 1x concentration)(Kapa Biosystems, Boston,
MA, USA), 0.75 μL of the forward primer 515F (10 μM), 0.75 μL of the reverse primer 806R
(10 μM), 2 ng DNA template, and PCR-grade water. Forward and reverse primers were modi-
fied according to Caporaso et al. [72] to include Illumina MiSeq flowcell adapter sequences,

Microbial Succession on Leaf Litter during Instream Litter Breakdown

PLOSONE | DOI:10.1371/journal.pone.0130801 June 22, 2015 6 / 22



linker and pad regions, and a 12-bp Golay barcode on the reverse primers. Touchdown PCR
conditions were as follows: 95°C for 2 min; 12 cycles of 98°C for 20 s, 61C for 30 s, decreasing
1°C at every cycle, and 72°C for 30 s; 20 cycles of 98°C for 20 s, 50°C for 30 s, and 72°C for 30 s;
and 72°C for 10 min. PCR products were precipitated in 95% ethanol, re-suspended in 15 μL
sterile molecular grade water, verified on a 1% agarose gel, and quantified using a Qubit fluo-
rometer v2.0 (Life Technologies, Carlsbad, CA, USA). Following quantification, amplicons
were pooled at equimolar concentrations and size selected using the E.Z.N.A. NGS Clean-IT
kit (Omega Bio-Tek, Norcross, GA, USA) to remove primer dimers. The pooled, size-selected
library was quantified using Qubit and sequenced using a final library concentration of 6.1 pM
with a 30% PhiX spiked-in control. Paired-end sequencing was done using a 2x150 MiSeq
reagent kit (Illumina, San Diego, CA, USA) on an Illumina MiSeq and involved 3 sequencing
primers added [72]. Following sequencing, image analysis, base calling, and error estimation
were done using MiSeq Reporter Software v1.1.6 (Illumina, San Diego, CA, USA).

Data analyses
We used a mixed effects model to test the fixed effects of date, leaf species, and the date-species
on litter breakdown and microbial assemblage composition. This model also included the ran-
dom terms of block nested within date and the interaction of block nested within date and leaf
species. To confirm the degree of difference in streamwater conditions among runs, we also
compared initial current velocity and water depth using the above model. Residual plots were
examined to check the assumptions of linear modeling. Current velocity at time of removal
and relative fungal biomass were square-root transformed prior to analysis. Tukey’s post-hoc
tests were used to compare mean initial current velocity among rus and mean AFDM remain-
ing among leaf species [73].

RISA gel images were analyzed using BioNumerics Software v5.0 (Applied Maths, Kortrijk,
Belgium) to quantify bacterial assemblage similarity. Bands were used to create a presence-
absence matrix for further analysis. Bands were defined relative to the highest band density on
that pattern, where all bands, with a density>10% of the highest band density, were selected
for further analyses. Similarities between band presence-absence fingerprints were calculated
using Jaccard’s coefficient, and cluster analysis (Ward’s method) [74] was then used to create
dendrograms to visualize bacterial assemblage similarity [71].

Paired-end, bar-coded 16S rRNA gene sequences were aligned using PANDAseq [75], and
aligned sequences (“contigs”) were analyzed further using the QIIME pipeline [76]. Sequences
were sorted by barcode, and all reads!75 bp and with a Q-score! 20 were included in all
downstream analyses. Using QIIME, operational taxonomic units (OTUs) were picked at 97%
similarity using UCLUST [77], and a representative set of sequences was generated based on
the most abundant sequence observed for an OTU. This representative set of sequences was
aligned using PyNAST [78] against the Greengenes database [79], and taxonomy was assigned
using RDP classifier [80]. Chimeric sequences were removed using ChimeraSlayer [81], and
sequences classified as chloroplast (not including Cyanobacteria) were filtered out with
QIIME. Alpha diversity metrics were calculated for bar-coded next-generation 16S rRNA gene
sequence data, including OTU abundance, Chao1 richness estimates, phylogenetic distance,
and Shannon’s diversity [82, 83]. Beta diversity was estimated by calculating weighted and
unweighted UniFrac distances [84]. An even sampling depth of 4,262 sequences was used to
rarify all samples prior to all diversity estimations. The mixed model mentioned above was
used to test the fixed effects of leaf species and date on alpha diversity metrics and bacterial
taxa abundance. Phylogenetic distance estimates were Box-Cox transformed prior to analysis
[85], and a Yeo-Johnson transformation was applied to Flavobacteria relative abundance data

Microbial Succession on Leaf Litter during Instream Litter Breakdown

PLOSONE | DOI:10.1371/journal.pone.0130801 June 22, 2015 7 / 22



to satisfy linear modeling assumptions [86]. Relative abundance of Proteobacteria classes (α,β,
and γ) also was transformed using a Yeo-Johnson transformation to satisfy normality [86], and
we used a Kruskal-Wallis test [87] to test for the effects of leaf species and date on relative
abundance of the Proteobacterial classes. We also used a Kruskal-Wallis test [87] to test for
effects of leaf species and date on the relative abundance of Acidobacteria, Bacteroidetes, Verru-
comicrobia, and Sphingobacteria. Jackknifed cluster analysis was done on bar-coded next-gen-
eration 16S rRNA gene sequence data based on weighted and unweighted UniFrac distances
using unweighted pair group method with arithmetic mean (UPGMA) [88].

Overall lipid profiles and bacterial assemblage composition (both RISA patterns and bar-
coded sequences) were compared for each leaf species over time using Analysis of Similarity
(ANOSIM) [89]. For these comparisons, a Bray-Curtis dissimilarity matrix [90] was calculated
for lipid and RISA profile comparisons, and unweighted UniFrac distances were used for com-
parison of bar-coded next-generation 16S rRNA gene sequence data among samples. An alpha
level of 0.05 was used for all statistical analyses.

Nucleotide sequence accession number
All sequences obtained from extracted DGGE bands and bar-coded next-generation sequenc-
ing were submitted to the NCBI Sequence Read Archive (SRA) under the study accession num-
ber SRP033423.

Results
Environmental conditions
Streamwater pH and dissolved oxygen measurements on day 1 indicated the stream was acidic
(pH = 4.33), but well oxygenated (8.65 mg/L, 88% saturation). Initial measurements for all runs
on day 0 revealed a mean (± SE) water depth of 0.16 ± 0.01 m and a mean current velocity of
0.07 ± 0.01 m/s. Initial water depth among runs did not differ (p = 0.074), whereas initial cur-
rent velocity varied among runs (p = 0.032). Tukey’s pairwise comparisons of initial current
velocity among runs indicated that the run sampled on day 2 was more similar to the runs sam-
pled on days 32 and 64 than any other runs, but given that leaf litter microbial assemblage data
on day 2 was more similar to days 0, 4, and 8, this difference in current velocity likely had little
effect on the leaf litter microbial assemblage relative to sampling date. Water temperature dur-
ing the 128-d study decreased from a mean of 15.2°C (day 1, 4 Jan) to a minimum of 3.7°C (day
44, 16 Feb) and reached a maximum of 30.3°C by day 128 (12 May), with a mean temperature
of 13.4°C over the incubation period. Mean water depth at individual leaf packs when retrieved
was 0.17 (± 0.01) m, which did not differ between leaf species (p = 0.791). Mean current velocity
immediately upstream of retrieved leaf packs was 0.07 (± 0.01) m/s, which also did not differ
between species (p = 0.118). Mean water depth at leaf packs decreased significantly (p =
<0.001) from 0.31 m on day 1 to 0.09 m on day 128. Mean current velocity also varied over
time (p = 0.003) with highest velocity on day 4 (0.12 m/s) and lowest on day 8 (0.02 m/s).

Litter breakdown
Over the study, mean litter breakdown rates (k) for red maple (hereafter maple), water oak
(hereafter oak), and mixed litter were 0.075, 0.026 and 0.033 d-1, respectively (Fig 1). Break-
down varied significantly between leaf species (p<0.001). Maple packs contained significantly
less litter over time than both oak and mixed-species packs. Mixed-species breakdown was sig-
nificantly faster than oak and significantly slower than maple (Fig 1). The exponential decay
model explained 85.6, 94.8, and 87.9% of the variation in maple, oak, and mixed litter
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breakdown, respectively (Fig 1). Maple AFDM decreased rapidly from 100 to 81.2% remaining
after 1 day’s incubation. In contrast, oak showed little AFDM change over the same interval
(~2% loss), and mixed litter decreased from 100 to 91.0%. After 128 d, maple had 46.6%
AFDM remaining, compared to 73.9% remaining for oak and 70.5% for mixed litter packs.

Microbial assemblage characterization
Relative bacterial and fungal lipid abundance, estimated by FAME analysis, differed signifi-
cantly between maple and oak on all dates except day 128 (Figs 2 and 3). Overall, bacterial lipid
relative abundance on maple was higher than oak (p<0.001, Fig 2), whereas oak showed higher
fungal lipid relative abundance than maple (p<0.001, Fig 3). Fungal lipid relative abundance
on oak tended to decrease over the incubation, whereas bacterial lipid abundance steadily
increased (Fig 3). Bar-coded next-generation sequencing yielded 195,835 paired-end sequences
with quality scores>20 and a mean of 11,311 sequences per sample. The number of observed
bacterial OTUs, based on bar-coded next-generation sequence data, increased over time for
both species, ranging from ~337 OTUs on day 0 to ~979 OTUs on day 128 for maple and ~463
OTUs on day 0 to ~775 OTUs on day 128 for oak. There was no effect of leaf species on any
bacterial alpha diversity measure (p>0.05 for all metrics), but all 4 alpha diversity metrics

Fig 1. Mean (± 1SE) ash free drymass (AFDM) remaining over time during breakdown of red maple (closed circles), water oak (open circles), and
mixed litter (inverted solid triangle) leaf packs incubated for 128 d in Kings Mill Creek, GA, USA.

doi:10.1371/journal.pone.0130801.g001
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varied over time (p<0.001, Table 1). However, there was no species-date interaction for any
bacterial alpha diversity metric (p>0.05 for all metrics, Table 1).

Analysis of bacterial assemblage composition using RISA showed little dependence on leaf
species (p = 0.076); in contrast, composition varied strongly by date (p<0.001, Fig 4). PLFA
also indicated high variation in lipid profiles over time for both maple and oak (p = 0.001 and
0.005, respectively). Cluster analysis of RISA data clearly defined 3 temporal groupings of

Fig 2. Mean (± 1SE) % relative abundance of bacterial lipid markers of red maple and water oak leaf
packs over a 128-d incubation in Kings Mill Creek, GA, USA. (* = p<0.001, ns = not significantly different).

doi:10.1371/journal.pone.0130801.g002

Fig 3. Mean (± 1SE) % relative abundance (%) of fungal lipid markers of red maple and water oak leaf
packs over the 128-d incubation In Kings Mill Creek, GA, USA. (* = p<0.001, ns = not significantly
different).

doi:10.1371/journal.pone.0130801.g003

Microbial Succession on Leaf Litter during Instream Litter Breakdown

PLOSONE | DOI:10.1371/journal.pone.0130801 June 22, 2015 10 / 22



bacterial assemblages, pre-immersion, early breakdown, and later breakdown assemblages (Fig
4). Jackknife-based UPGMA clustering of weighted and unweighted UniFrac distances, calcu-
lated from next-generation 16S rRNA gene sequence data, both suggested structuring of bacte-
rial assemblages into 3 temporal groupings. There was no overall effect of leaf species on
bacterial assemblage structure (unweighted p = 0.525; weighted p = 0.605) based on next-gen-
eration 16S rRNA gene sequence data, although as with PLFA, assemblage structure varied
strongly with date (p<0.001) (Fig 5).

Sequenced DGGE bands yielded the identity of several common bacterial taxa within litter
(S2 Fig and S3 Fig). Bacteria on maple included the genera Ralstonia (Burkholderiales, β-Pro-
teobacteria; day 0), Sphingopyxis (Sphingomonadales, α-Proteobacteria; days 1 and 32), Delftia
(Burkholderiales, β-Proteobacteria; day 4), Herbaspirillum (Burkholderiales, β-Proteobacteria;
day 4), Nitrosospira (Nitrosomonadales, β-Proteobacteria; day 8), and Collimonas spp. (Bur-
kholderiales, β-Proteobacteria; days 16, 64, and 128), with sequence identities to GenBank
matches ranging from 95 to 100%. Citrobacter (Enterobacteriales, γ-Proteobacteria) occurred
on oak on all dates. Genera from 4 other ribotypes also were abundant, including Sphingomo-
nas (Sphingomonadales, α-Proteobacteria; day 1), Aquabacterium (Burkholderiales, β-Proteo-
bacteria; day 8), Sphingopyxis (Sphingomonadales, α-Proteobacteria; day 0), and Thiobacillus
(Hydrogenophilales, β-Proteobacteria; day 128), with sequence identities to GenBank matches
ranging from 95 to 100%. Total bacterial ribotype richness was higher for maple than oak, with
21 distinct ribotypes on maple (S2 Fig) and 18 on oak (S3 Fig). The highest ribotype richness
for maple (14) was on day 32, whereas richness on oak was highest on days 0 and 1 (10 and 16
ribotypes, respectively).

A summary of taxa obtained from next-generation 16S rRNA gene sequencing is presented
in Fig 6 for both the phylum and class levels. The phylum Proteobacteria dominated both
maple and oak over the study, although the dominant class varied with date. Prior to instream
incubation, maple and oak both contained mostly γ-Proteobacteria (54.0 and 56.6%, respec-
tively) and also α-Proteobacteria (17.8% maple; 14.1% oak). Many of the γ-Proteobacteria
came from the families Aeromonadaceae, Enterobacteriaceae, and Pseudomonadaceae. Abun-
dance of α-Proteobacteria before incubation was mostly taxa from the orders Rhizobiales and
Sphingomonadales.

The relative abundance of α- and β-Proteobacteria did not differ between leaf species
(p = 0.962 α- and p = 0.923 β-Proteobacteria) but varied over time (p = 0.001 α- and p = 0.053 β-
Proteobacteria). After 32 days, most Proteobacteria were from the α- and β-Proteobacteria clas-
ses, which increased in relative abundance during this interval. Many of the β-Proteobacteria
sequences were within the order Burkholderiales (particularly the familyOxalobacteraceae). For

Table 1. Comparison of alpha diversity metrics calculated for maple and oak leaf litter bacterial assemblages from paired-end sequencing results
following 0, 32, and 128 days instream incubation at an even sampling depth of 4260 sequences.

Treatment Alpha Diversity Metric

Day Chao1 OTUs Phylogenetic Distance Shannon's Index

Maple 0 1043.41 ± 34.44 c 337.10 ± 25.40 c 18.96 ± 0.30 d 4.45 ± 0.35 c

32 1480.27 ± 269.69 bc 558.33 ± 96.37 bc 37.65 ± 4.33 bc 5.96 ± 0.67 abc

128 2209.96 ± 209.93 a 978.97 ± 124.12 a 57.44 ± 8.21 a 7.73 ± 0.58 a

Oak 0 1446.00 ± 95.58 bc 463.30 ± 106.95 c 22.32 ± 2.11 cd 5.28 ± 0.80 bc

32 1608.40 ± 27.06 bc 604.97 ± 5.62 bc 33.62 ± 1.96 bcd 6.58 ± 0.09 ab

128 1985.74 ± 160.85 ab 774.93 ± 69.05 ab 48.73 ± 4.81 ab 6.73 ± 0.36 ab

Superscript letters beside metric values represent Tukey’s multiple comparison groupings for each metric (α = 0.05).

doi:10.1371/journal.pone.0130801.t001
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Fig 4. Dendrogram of ribosomal intergenic spacer analysis (RISA) electropherograms displaying bacterial assemblage similarities calculated
usingWard’smethod based on Jaccard’s similarity coefficient.

doi:10.1371/journal.pone.0130801.g004
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α-Proteobacteria, the relative abundance of Sphingomonadales increased after 32 days, as did the
orders Caulobacterales (mainly Caulobacteraceae) and Rhodospirillales (mostly Rhodospirilla-
ceae and some Acetobacteraceae). By 128 days, the relative abundance of β-Proteobacteria
sequences remained steady (25.7% maple, 37.8% oak) compared to those at day 32 (30.3%
maple, 25.6% oak), but the number of sequences from α-Proteobacteria decreased compared to
the abundance observed at day 32 (from 24.2 to 12.9% in maple, 27.9 to 13.4% in oak). The
abundance of sequences that affiliated with the γ-Proteobacteria did not differ between leaf spe-
cies (p = 0.630) but declined over time (p = 0.005). Specifically, between days 0 and 32 γ-Proteo-
bacteria decreased from 54.0 to 15.8% in maple and 56.6 to 13.2% in oak, with most γ-
Proteobacteria sequences on day 32 being in the family Pseudomonadaceae (75.3% maple, 65.2%
oak). Last, relative abundance of γ-Proteobacteria declined from 15.8% (maple) and 13.2% (oak)
on day 32 to 5.5% and 6.2%, respectively, on day 128 (Fig 6).

Other litter bacterial phyla varying over time included Acidobacteria, Bacteroidetes, and
Verrucomicrobia. Overall relative abundance of Acidobacteria sequences did not differ between
leaf species (p = 0.700) but increased over time (p = 0.007), from 0.4% (maple) and 1.1% (oak)
on day 0 to 5.3% (maple) and 4.4% (oak) on day 128, many from the family Solibacteraceae.
Relative abundance of Bacteroidetes sequences also did not differ between species (p = 0.773)

Fig 5. Unifrac-based unweighted pair groupmethod with arithmetic mean (UPGMA) clustering of
maple and oak sequences following 0, 32, and 128 days of instream incubation. Values at nodes
represent level of clustering support expressed as a decimal ranging from 0 to 1.0.

doi:10.1371/journal.pone.0130801.g005
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but decreased over time (p = 0.023). Most Bacteroidetes sequences were from the class Sphingo-
bacteria, whose abundance did not vary over the study (p = 0.574); in contrast, abundance of
Flavobacteria sequences decreased (p = 0.002) over the study from 7.2 to 5.0% (maple) and 5.9
to 3.7% (oak). Relative abundance of Verrucomicrobia (mainly from the order Verrucomicro-
biales) did not differ between species (p = 0.290) and increased over time (p = 0.001), from
0.1% for both species pre-incubation to 11.8% and 7.9% in maple and oak, respectively, after
128 days.

Discussion
Breakdown rates strongly differed between leaf species in our study, with observed rates being
faster for red maple than water oak, a result consistent with previous work [1]. This difference
in breakdown likely reflects intrinsic physicochemical differences between oak and maple leaf
species with higher lignin content, a thicker cuticle, and increased tannins likely contributing
to slower breakdown for oak [1, 17, 47, 91]. PLFA results from our study were similar to others
[38] suggesting that time of incubation is the main determinant of microbial assemblage

Fig 6. Relative abundance of class- and phylum-level bacterial taxa. Data derived from bar-coded next-generation sequencing of 16S rRNA gene
amplicons and represent taxa affiliation summaries for both leaf species (maple and oak) following 0, 32, and 128 days in stream incubation. Classes
representing <0.5% in all samples were grouped and represented as “Other” for their given phylum, whereas phyla representing <0.5% of all sequences were
grouped as “Other Bacterial Classes”.

doi:10.1371/journal.pone.0130801.g006
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structure, as microbial lipid profiles of both species varied strongly with incubation time. How-
ever, there were clear species-level differences in microbial assemblages. The higher relative
bacterial lipid abundance on maple (vs. oak) could have resulted from oak having a smaller leaf
surface area available for colonization by bacteria compared to maple, or also having higher
tannin and lignin content, as well as a thick waxy cuticle, thus reducing bacterial colonization
because of higher refractory materials. Das et al. [38] also observed increased bacterial lipid
abundance on sugar maple compared to oak, and cited the availability of colonizable physical
leaf substrate as a plausible reason for the difference between species. In addition, the faster
breakdown of maple may increase nutrient availability on leaf surfaces and thus stimulate bac-
terial growth [32]. Alternatively, oak showed higher relative fungal lipid abundance than maple
on most sampling dates, possibly because fungi are more capable of colonizing and degrading
lignin-rich oak than bacteria [92, 93], potentially allowing fungi to dominate for a longer
period under such conditions. In contrast, increased nutrient availability on maple with lower
lignin than oak may facilitate bacterial colonization, thus leading to increased bacterial lipid
abundance over time. Initial lignin concentration has been indicated as a key factor in control-
ling breakdown by reducing available C in litter [91]. In our study, relative abundance of fungal
lipids on oak did decrease over the 128-d incubation (Fig 3), so increased bacterial lipid relative
abundance may have resulted from increased nutrients for bacteria following fungal coloniza-
tion and conditioning [32].

Decreased maple-oak differences in bacterial and fungal lipid relative abundance during
later breakdown (e.g., on day 128) also could be attributable to plant compounds (e.g. tannins,
phenolics, etc.) present in higher quantities during early breakdown that leached or were other-
wise diminished over time. Canhoto & Graça [94] demonstrated the inhibitory effects of sec-
ondary compounds, such as tannic acid, on fungal growth. In that study, decreased growth of
four aquatic hyphomycete taxa occurred following addition of increasing concentrations of
tannic acid and eucalyptus oils. In our study, chemical differences between maple and oak
would likely be at their highest during initial incubation, before significant leaching; thus, our
observations of the most extreme differences between maple and oak microbial lipid abun-
dance occurring during initial breakdown are consistent with this mechanism. This equalizing
of fungal and bacterial lipid relative abundance over time was also observed by Chapman et al.
[95] using mixed and single species leaf litter. The decreased difference in microbial lipid rela-
tive abundance between maple and oak over time also may indicate increased bacterial coloni-
zation on oak following fungal conditioning, permitting colonization by litter-associated
bacteria previously incapable of colonizing oak leaf surfaces, possibly by increasing available
surface area or through development of fungal hyphae. The ability of fungal presence to facili-
tate bacterial colonization has been suggested [30], and higher bacterial colonization in
response to increased surface area and available organic matter has been shown[96].

Maple and oak differed in initial bacterial lipid relative abundance, but both species
showed similar bacterial alpha diversity overall based on next-generation sequencing data.
This result would suggest that although initial leaf physicochemical differences may affect
microbial lipid accumulation rates, these differences do not appear to affect diversity of taxa
colonizing litter. RISA and next-generation sequencing results indicated that bacterial assem-
blage structure was more influenced by incubation time than by leaf species. Taken together,
these results and our microbial lipid profiles support the results of Das et al. [38] who also
found time was more important than leaf species in structuring fungal, bacterial, and actino-
mycete assemblages on litter.

DGGE analysis of bacterial composition showed similarities in dominant taxa (e.g. Sphingo-
pyxis) on both leaf species. Both next-generation sequencing and DGGE showed the phylum
Proteobacteria to be the dominant phylum present during leaf breakdown Dominant bacterial
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orders (i.e. Sphingomonadales and Burkholderiales) identified by sequencing of DGGE bands
also were represented in next-generation sequencing data. Similar to the next-generation
sequencing results, most β-Proteobacteria identified using DGGE were from the order Burkhol-
deriales. Next-generation sequencing also identified many other taxa not observed using
DGGE. Using these two methods allowed us to identify dominant taxa for all time points using
DGGE and to then select a subset of specific time points for 16S rRNA gene sequencing to
obtain a more comprehensive view of bacterial composition during breakdown. It is important
to note that by comparing DGGE- and next-generation 16S rRNA gene sequence data, DGGE
underrepresented taxa richness (and alternatively, next-generation sequencing overestimated
taxa richness to some degree), so bacterial taxa observed in DGGE analysis of maple and oak
leaves likely are the more dominant taxa at their respective dates of incubation. Next-genera-
tion 16S rRNA gene sequence data showed much higher bacterial taxon richness exists within
these bacterial assemblages.

In general, prior to immersion the phyllosphere of both maple and oak leaves was domi-
nated by α- and γ-Proteobacteria, and secondarily by β-Proteobacteria. In a study comparing
terrestrial phyllosphere composition among several angiosperm and gymnosperm species,
Redford et al. [97] noted a similar phyllosphere composition from these families. By examining
litter bacterial assemblages at various time points before and during instream breakdown, our
study is the first to document taxonomic shifts in bacterial assemblage composition both dur-
ing the transition from the terrestrial phyllosphere to the aquatic environment as well as over
time during instream incubation. The observed increase in α- and β-Proteobacteria likely
occurs in response to the terrestrial-to-aquatic transition. Both α- and β-Proteobacteria are
dominant groups within freshwater sediment assemblages [98, 99] and have been shown to
dominate detrital aggregates in lentic systems [100].

Observed increases in abundance of bacteria within the orders Burkholderiales (family Oxa-
lobacteraceae), Sphingomonadales (family Sphingomonadaceae), Caulobacterales (family Cau-
lobacteraceae), and Rhodospirillales (families Acetobacteraceae and Rhodospirillaceae) as
breakdown proceeds suggests the increased role of these taxa in progressive degradation of
maple and oak. Each of these orders contain members with degradative, diazotrophic, and oli-
gotrophic attributes that suit their colonization and use of submersed, degrading leaf litter, and
many have been implicated in organic matter decomposition [101, 102]. Members of the more
abundantly observed families (Oxalobacteraceae, Sphingomonadaceae, Caulobacteraceae,
Acetobacteraceae, and Rhodospirillaceae) are common heterotrophic bacteria, and many are
known from fresh water [103–105]. The family Oxalobacteraceae includes taxa that use organic
compounds as an energy source as well as diazotrophic members [103]. Sphingomonadaceae is
a nutritionally diverse family as well and is known for its degradative abilities [103]. Members
of the family Caulobacteraceae are chemoorganotrophs and oligotrophs, which are capable of
using organic C and surviving in low-nutrient environments [103]. Most genera of the family
Rhodospirillaceae are photoheterotrophs often using organic compounds as a C source [103].
In our study, many sequences identified as members of the families Caulobacteraceae, Sphin-
gomonadaceae, Oxalobacteraceae, and Rhodospirillaceae increased in abundance after 32 days
of incubation and then decreased by day 128. Such dynamics would suggest 1) an initial
increase in readily accessible organic material after the first month of instream incubation and
leaching, and 2) a subsequent decrease in readily accessible organic matter, which, in turn,
causes decreased abundance of these taxa.

Our results demonstrated that fast breakdown leaf species (i.e., red maple) were more read-
ily colonized by bacteria, whereas slower degrading species (i.e., water oak) were initially domi-
nated by higher fungal lipid abundance but supplanted by increasing relative abundance of
bacterial lipids over time. As litter leachate rates temporally decrease and microbial
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conditioning increases available leaf surface area, colonization by additional bacterial species
on oak may become less constrained by leaf physicochemical differences and more easily colo-
nized by bacteria. Over time, as bacterial lipids accumulate on oak, they eventually reach a level
similar to that of maple, whose leachate is more easily dispersed and is more readily colonized.
Overall, our results suggest differences in leaf physicochemistry may affect the rate at which
bacteria can colonize leaf litter, but these conditions do not play as great a role structuring bac-
terial assemblages of litter as does time of incubation.

Given the predominant role of incubation time in structuring leaf litter microbial assem-
blages, future studies could focus on investigating the role of seasonal and annual variability on
litter microbial assemblage composition and turnover. In addition, the effect of incubation
time on composition may vary with current velocity given its effect on litter leaching rate
[106]. Future leaf breakdown studies conducted over a wide array of current velocity regimes
(e.g., lotic to lentic environments) could explore the degree to which flow conditions modify
the hierarchical effect of incubation time and leaf physicochemistry on structuring leaf litter
microbial assemblages.

Supporting Information
S1 Fig. Diagram illustrating leaf pack arrangement within a single run unit. A = red maple,
B = water oak, C = mixed litter.
(TIF)

S2 Fig. Denaturing gradient gel electrophoresis (DGGE) analysis of red maple leaf pack
bacterial assemblage. Upper case letters indicate sequenced ribotypes. (Ribotype key: A = Delf-
tia, B = Sphingopyxis, C =Herbaspirillum, D = Nitrosospira, E = Ralstonia, F = Collimonas).
(TIFF)

S3 Fig. Denaturing gradient gel electrophoresis (DGGE) analysis of water oak leaf pack
bacterial assemblage.Upper case letters indicate sequenced ribotypes. (Ribotype key: B =
Sphingopyxis, G = Sphingomonas, H = Aquabacterium, I = Citrobacter, J = Thiobacillus).
(TIFF)
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